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Abstract. An effective technique for computation of the electron density and spin magnetic
moment in a ferromagnet, based on the relativistic Korringa–Kohn–Rostoker method, is
developed and realized. The calculation formulae are derived using the Hellmann–Feynman
theorem and perturbation theory for matrices. The influence of spin–orbit interaction on the
formation of the electron spectrum as well as the problem of compatibility of electron states are
discussed. The electron density and spin moment distributions and s-, p-, d-type contributions
to them are analysed.

1. Introduction

A theoretical scheme for calculating the electron spectra of magnetics based on the Dirac
equation has been described in basic papers [1, 2]. Many results have already been obtained
by following the suggested approach which gained wide acceptance.

More recently we proposed [3] a somewhat different technique for calculating the
electron states of a collinear ferromagnet based on a relativistic version of the Green function
method [4, 5]. Unlike Feder, Strange and co-workers [1, 2], who considered the band theory
problem as a scattering one, we made use of the conventional representation of the electron
states in a crystal in terms of the energy eigenvalue spectrum and the wave eigenfunctions.

The treatment of the problem is based on the Dirac equation(
Ĥ0 +1V Σ̂

)
9 = ε9. (1)

HereĤ0 is the Dirac operator

Ĥ0 = cα̂p +mc2β̂ + V Î . (2)

The term1V Σ̂ ensures the spin polarization;

α̂ =
(

0 σ̂
σ̂ 0

)
β̂ =

(
Î 0
0 −Î

)
Σ̂ =

(
σz 0
0 σz

)
(3)

whereσx , σy , σz are the Pauli matrices, and̂I is the unit matrix; and the atomic system of
units with energy in Ryd is used, so thatm = 1

2, c = 274.072. . ..
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In the muffin-tin (MT) approximation for the potentialsV and 1V a convenient
representation of the four-component spinor9 can be obtained only inside the MT sphere:

9 =
∑
l,µ
ν=1,2

i l Clµ,ν

(
ψlµ,ν

−iψ̃lµ,ν

)
(4)

where

ψlµ,ν =
(
glµ,ν+Ylm
glµ,ν−Ylm′

)
(5a)

cψ̃lµ,ν =
(

1 + E − V

c2

)−1(
σ̂∇)

ψlµ,ν. (5b)

Clµ,ν are undetermined coefficients,glµ,ν± are solutions of a set of radial equations (see
[3], equation (13)),Ylm are spherical harmonics,m = µ− 1/2, m′ = µ+ 1/2, the signs±
labelling g denote the spin direction, andE = ε −mc2.

It should also be noted that relation (5b) is approximate, since the term1V/c2 is
dropped in the first brackets on the right-hand side. Therein lies our main approximation.

In the outer part of a crystalline cell the representation of9 is too unwieldy to be used
in calculating the matrix elements of any operators by direct integration over the cell. At
the same time some physical characteristics may be obtained without recourse to explicit
finding of 9. In the present publication we propose a way to evaluate the share of the
electron density that falls within the MT sphere, the spin component of the magnetization
and its MT part without calculating9.

Further, the technique developed is used for calculating the density and magnetization
in ferromagnetic iron (FM-Fe). Iron, as an ideal collinear ferromagnet, has become in a
sense a model material for the study of the influence of relativistic effects on the formation
of magnetic properties in metals. Within the last few years many papers have been devoted,
in particular, to investigations of characteristic features of the (FM-Fe) electron structure,
based on a consistent relativisticab initio calculation. It is not our intention to review all
these papers; we shall refer only to those [6–9] whose results can be correlated with ours.
The structure of the paper is as follows. The principal mathematical statements are given in
section 2. In section 3 we discuss the influence of spin–orbit interaction on the formation of
the FM-Fe spectrum, and especially the problem of state compatibility which, in our opinion,
has not received sufficient attention in previous publications. The distribution of the electron
density and spin moment inside the MT sphere—depending on the state—is considered in
section 4, as well as the contributions of s, p and d type in total magnitudes. Section 5 is
devoted to some peculiarities of the formation of the total spin magnetic moment. A brief
general summary is given in section 6.

The results presented in this publication have been obtained using the same model and
approximations as in our earlier paper [10]. All tabulated values are accurate to (1–2)×10−4.

2. Statement of the general principle

Let the potentialV in equation (1) be assigned a small constant increment1, which differs
from zero inside the MT sphere. Then in the first order of perturbation theory

1ε

∫
�WS

9†9 dr = 1

∫
�MT

9†9 dr (6)
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where�WS and�MT are the volumes of the Wigner–Seitz (WS) cell and the MT sphere,
respectively. As1 tends to zero, we obviously have

ω = ∂ε

∂1
=

∫
�MT

9†9 dr

/ ∫
�WS

9†9 dr (7)

i.e. ω represents the share of the density within the MT sphere. Thus, having specified the
procedure for finding the derivative in equation (7), we obtain a9-independent technique
for calculating the MT share of the electron density, i.e. its degree of localization, depending
on the type of the state.

If now the small constant increment1 is assigned to the potential1V in (1), we have

1ε

∫
�WS

9†9 dr = 1

∫
�WS

9†Σ̂9 dr. (8)

Further, depending on whether the increment1 is nonzero everywhere over the WS cell or
only inside the MT sphere, we get two limiting relations:

Sz = ∂ε

∂1
=

∫
�WS

9†Σ̂9 dr

/ ∫
�WS

9†9 dr (9)

and

SMT = ∂ε

∂1
=

∫
�MT

9†Σ̂9 dr

/ ∫
�WS

9†9 dr. (10)

The first equation gives the total mean value of the spin moment projection onto the Oz

axis for a given state, while the second defines its MT share. And again the problem
reduces to the calculation of some energy derivatives with respect to the parameter. We
have repeatedly used this simple expedient when normalizing the wavefunctions [11], and
calculating the velocities [12] and the effective mass [13].

The main dispersive equation for a relativistic ferromagnet has the form (see [3],
equation (22))∣∣∣∣A+W+ W

W † A+W−

∣∣∣∣ = 0 (11)

where theA are the potential-independent matrices of structure constants, whose explicit
analytical form is contained in [14];W±, W are relativistic cotangents of scattering phases,
for which explicit expressions are given in [3], equations (23)–(25).

It is known that for dispersive equations like (11) the energy eigenvaluesεn(k) are
found subject to the condition that an eigenvalueλj (E) of the corresponding matrix is
equal to zero. In the problem under consideration thisλj will depend on the parameter1
both explicitly and through the dependence of the energy on this parameter. At the same
time the condition

λj
(
εn(k,1),1

) = 0 (12)

should be fulfilled at any value of1. Then, obviously

∂εn

∂1
= −∂λj

∂1

/ (
∂λj

∂E

)
E=εn

. (13)

Thus, mathematically the problem reduces to calculating the derivatives of the
eigenvalueλj of matrix (11) with respect to the parameter1 and the energyE.
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Denote the matrix elements of (11) byHlms,l′m′s ′ and let tj be the eigenvector of this
matrix corresponding to the eigenvalueλj . Then

∂λj

∂1
=

∑
lms
l′m′s ′

t∗j,lms
∂Hlms,l′m′s ′

∂1
tj,l′m′s ′ . (14)

For ∂λj/∂E the procedure is quite analogous. Let us note that simultaneously with
calculation ofω and SMT one can compute also the partial—i.e. corresponding to fixed
l—sharesωl andSl . To this end it is sufficient to carry out in (14) summation overm, s

andm′, s ′ with l fixed.
In what follows, we shall not pay attention to mathematical aspects. The detailed

mathematical manipulations, though elementary, are rather cumbersome routines and
contribute but little to the main point of the paper.

3. Peculiarities of the ferromagnetic iron spectrum formation within the relativistic
scheme

In what follows the unit cell of FM-Fe will be considered as a Wigner–Seitz (WS) cell. The
Brillouin zone (BZ) is assumed to have a standard bcc form with points and directions of
k-space given in Bouckaert, Smoluchowskii and Wigner notation [15]. We also assume that
the magnetization vector lies in the Oz axis. Thus, it is significant that in the subsequent
discussion the Oz axis is the tetrad one.

If the Oz axis were an axis of ‘infinite-order’ symmetry, the projection of the total
angular momentum onto it,Jz, would be a conserved quantity (quantum number),µ. Since
in FM-Fe it is only the rotation through a finite angleπ/2 (and its multiples), denoted as
Ĵz(π/2), that commutes with the Dirac operatorĤD (see (1)), the eigenfunctions9 can be
chosen so that

Ĵz(π/2)9 = eiµπ/29. (15)

In other words, the conserved quantities that take the place ofµ will be eiµπ/2. Since,
however,

eiµπ/2 = eiµ′π/2 (16)

if

µ− µ′ ≡ 0 (mod 4) (17)

the angular momentum projectionµ is defined in accordance with the comparison equation
(17), i.e. we can put̃µ = ±1/2, ±3/2 and classify all the states of9 with respect to the
value of µ̃.

At the BZ points of general type, there is little sense in classifying the states on the
basis of point symmetry operations. If, however, such operators are involved in the group of
wavevectork, some additional information about the state behaviour may be obtained. (It
is not our intention to perform a full group analysis of the problem, the above consideration
being quite sufficient for what follows. Closer examination of the problem can be found
in [16].) Consider, for example, the states with a wavevectork, directed along the Oz
axis. In this case the wavevector group involves a tetrad axis and all four types of state
are realized according to the value ofµ̃. To denote these states we shall use the symbol
1‖(µ̃). Passing to the points of higher symmetry0 and H does not substantially change
the situation, because the possible different types of state do not increase in number and
again they may be specified by the indexµ̃.
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When considering the states with the wavevector directed along the Oy (or Ox) axis, the
number of state types reduces to two by virtue of symmetry lowering. Again, for reasons
of symmetry we could introduce somẽµ, defined with an accuracy comparable in mod 2.
(More precisely,µ̃ would equal± 1

2(−1)l .) It is more convenient to use the indices±,
introducing the notation1⊥(±).

Because the states of different types do not interact, the corresponding dispersion curves
can intersect—that is, an accidental degeneracy may occur along the1 direction. Since the
numbers of noninteracting states are different for1‖ and1⊥ directions, the compatibility
of states must of necessity differ as well. As an illustration, we shall consider a group of
states which are identified as d-type states at the points0 and H of the BZ. The energy
values at geometrically identical points of the BZ are listed in table 1 for the1‖ and1⊥

directions. One can see that the numerical values of the terms presented differ by no more
than 2–3 mRyd. The same is true for all other pointsk along this direction—in other
words, the energy changes connected with different orientations ofk with respect to the
magnetization direction are small for Fe, as was to be expected.

Table 1. Energy values (in mRyd) at the pointsk = (π/a)(001) (i.e.1‖) andk = (π/a)(010)
(i.e.1⊥). The magnetic moment lies in the Oz direction.

Term typeb

µa µ̃ 1‖ 1⊥ (c) (d)

−3/2, 5/2 −3/2 366.3 366.3 + +
−1/2 −1/2 421.9 424.1 − −

3/2, −5/2 3/2 426.6 424.3 + −
−3/2, 5/2 −3/2 472.5 471.6 − +

3/2, 5/2 3/2 490.9 491.8 − −
1/2 1/2 555.7 558.7 + +

−3/2, 5/2 −3/2 562.2 559.8 − +
1/2 1/2 574.4 573.8 + +
3/2, −5/2 3/2 620.4 620.4 + −

−1/2 −1/2 698.2 698.2 − −
a Values ofµ involved ln the wave-function expansion for the given energy in the case1‖
(l 6 2).
b In the wave-function expansion the following values ofµ correspond to the sign ‘+’:
l = 0, µ = 1/2; l = 1, µ = −1/2, 3/2; l = 2, µ = −3/2, 1/2, 5/2; while l = 0, µ = −1/2;
l = 1, µ = −3/2, 1/2; l = 2, µ = −5/2,−1/2, 3/2 correspond to ‘−’.
c The type of state which actually corresponds to the given energy.
d The type of state which should correspond to the given1‖(µ̃) for reasons of symmetry.

The situation, however, appears to be more complicated when the general run of
dispersion curves is considered. The dispersion curves corresponding to two groups of
noninteracting states are shown in figure 1. For the1⊥ direction the states of each group
are interacting and the relevant dispersion curves cannot cross.

For the1‖ direction the groups considered contain in each case two types of state,
which are represented by different lines in figure 1. We see that the graphical picture has
undergone substantial changes. Crossing curves of different types appear, as well as curves
that almost merge together. Using solid and dashed lines to plot the curves on the right
in both parts of figure 1, we wanted to emphasize interrelation of different branches of
dispersion curves. It should be noted that all one needs to do in order to obtain a complete
spectrum pattern is to superimpose the two halves of figure 1 (given on facing pages). Then,
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Figure 1. This page: dispersion curves along1 directions: the left-hand side corresponds to
1‖(−1/2) (solid curves), and1‖(3/2) (dashed curves); while the right-hand side corresponds
to 1⊥(−). Facing page: as on this page, except that the left-hand side corresponds to1‖(1/2)
(solid curves),1‖(−3/2) (dashed curves); while the right-hand side coresponds to1⊥(+).

quite obviously, the meeting and closely spaced curves markedly grow in number.

4. The electron density and spin moment inside the MT sphere

The MT share of the electron density for a given state and the corresponding spin magnetic
moment were found according to (7) and (10). Let us recollect that, when using the MT
approximation for the potential, it is useful to calculate also the contribution of s, p and d
states to the total magnitude.
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Figure 1. (Continued)

The results of calculation at pointsk = (π/a)(001) andk = (π/a)(010) of the BZ for
a group of bands corresponding mainly to the d states are given in table 2. We begin our
consideraion with the states1‖(µ̃).

Although it is evident from the data presented that the main contribution to the density
comes from the d states, individual states exhibit some distinct features. So for the states
listed in rows 1–4, 7 and 9 of the table, the MT sphere accounts for more than 90% of the
d-electron density. For the states in rows 6, 8 and 10 a reduction in the share of d electrons
is mainly due to the appearance of s and p additions. The data in row 5, however, show
that even with a negligible hybridization the degree of delocalization (smearing) of the d
function may amount to more than 10%.
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Table 2. Total and partial electron densities inside the MT sphere and corresponding to spin
magnetic moment values (inµB ). All the magnitudes are listed for the same energies as in table
1 (the types of energy term1‖(µ̃) and differencesE‖ − E⊥ (in mRyd) are listed in the first
column; the following columns containω‖

0, ω
‖
1, etc andω‖

0 − ω⊥
0 , ω

‖
1 − ω⊥

1 , etc).

Term ω0 ω1 ω2 ω S0 S1 S2 SMT

1‖(−3/2) 0a — 0.912 0.912 0 — 0.912 0.912
— — — — — — — — —

1‖(−1/2) — 0.023 0.934 0.957 — 0.023 0.934 0.957
−2.2b — — — — — — 0.003 0.003

1‖(3/2) 0 0.023 0.934 0.957 0 0.023 0.930 0.953
2.3c — — — — — — −0.003 −0.003

1‖(−3/2) 0 — 0.979 0.979 0 — 0.977 0.977
0.9 — — 0.004 0.004 0 — 0.083 0.083

1‖(3/2) 0 — 0.891 0.891 0 — −0.887 −0.887
−0.9 — — −0.004 −0.004 — — −0 082 −0.082

1‖(1/2) 0.013 0.034 0.896 0.943 0.013−0.021 −0.766 −0.774
−3.0 0.004 0.001 −0.006 −0.001 0.004 0.002 0.041 0.047

1‖(−3/2) 0 0.030 0.917 0.947 0 −0.030 −0.914 −0.944
2.4 — — — — — — — —

1‖(1/2) 0.124 0.063 0.732 0.919 0.124 0.057 0.561 0.742
0.6 −0.003 −0.001 0.006 0.002−0.003 −0.003 −0.041 −0.047

1‖(3/2) 0 — 0.975 0.975 0 — −0.974 −0.974
— — — — — — — — —

1‖(−1/2) 0.093 0.038 0.818 0.949−0.093 −0.038 −0.817 −0.948
— — — — — — — — —

a ‘0’ corresponds to the precise zero value; ‘—’ denotes that the value is beyond the calculational
accuracy.
b,c The quantities corresponding to different groups of noninteracting states for1⊥ are printed
in different type-faces.

At the same time we can see that, as a rule, the absolute magnitude of the spin
moment follows the density. Small deviations of the spin-momentum values—namely their
decreasing—can be readily explained, e.g., by interaction of the spin of an electron with
its own ‘orbital’ motion. The exception is provided by the states in rows 6 and 8. Here
a pronounced decrease (in magnitude) of the spin moment is due to strong interaction of
1‖(1/2) states of the same type with different spin orientations. In other words, both states
are mixed in spin, the opposite-in-sign component being present at alll, which is evident
from comparison of the quantitiesωl andSl .

The analysis of changes in density and spin moment which arise when passing to
k = (π/a)(010) lends further support to our conclusions. First of all we should mention
that when the terms of the same type are separated by more than 50 mRyd (rows 1, 7,
9, 10), the density and the spin moment experience no perceptible changes at all. Slight
changes in rows 2 and 3 of the table are due merely to variations in the orbital ‘motion’
of either state, because for both values ofk the states remain noninteracting (see table 1).
Interactions between the states of rows 6 and 8 persist, but the degree of mixing of spins
with those of opposite signs decreases. Finally, interaction between states of rows 4 and
5 resulting from a symmetry change leads to their hybridization in spin and consequently
to a decrease (in magnitude) of the spin moment of either state. It should be stressed that
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the most significant changes in spin moment are not directly connected with variations of
the energy term or the corresponding electron density, which are always small as seen from
table 2.

Figure 2. The electron densityω and its partial componentsωl inside the MT sphere versusk for
the first and second energy bands. The solid curve representsω, where dotted, chain and dashed
ones representω0, ω1, andω2, respectively. The dispersion curvesE(k) (cross-and-dash) are
plotted on an arbitrary (but the same) scale.

The electron density and its partial components inside the MT sphere are plotted in
figure 2 for two lowest states1‖(1/2) and1‖(−1/2). Since the states do not interact, the
corresponding electron densities evolve independently. Both states degenerate into s states
at point0 and d states at point H. At all intermediatek-points all three types of component
are present in the states. It can be seen from the plots that the s and d components vary
monotonically in strict conformity with changes of the state type. Less natural seems the
presence of a rather significant p component (up to 20% at the centre of the0H segment)
for energies far removed from the p terms.

The electron spin moment and its partial components follow exactly (with an accuracy
of 0.001) the trend of the density curve and the corresponding plots are just identical to
those presented except for sign: the sign of the projection is positive for the states with
µ̃ = 1/2 and negative for̃µ = −1/2. Note, that the components of all three types are
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equal spin carriers, so in this regard the d electrons do not stand out. We shall not discuss
the states in the1⊥ direction, because in this case the results coincide with the preceding
ones, even quantitatively.

5. The total spin moment for different quantum states

In [10] it was pointed out that weak spin–orbit interaction in Fe affects only slightly the
magnitude of the energy terms and hence also the Fermi level position, energy band widths
and density of states. It has already been shown (tables 1 and 2) that for the same reason
the changes occurring in the energy and spatial density distribution are small fork parallel
and normal to the magnetization direction. It was also mentioned that the spin magnetic
moment in this state does not follow the density variation.

The calculations of the total spin moment for thek-space directions parallel and normal
to the magnetization(k‖ and k⊥) revealed a rather quaint picture of〈σz〉 variation. The
results of the calculations are shown in table 3. The bands are labelled in accordance
with figure 1, while thek-point numbering follows the division of the0H segment into
subintervals(1/8)(2π/a); the unnumbered rows correspond to intermediatek-values.

First we consider the results in the top half of table 3. The states of the dispersion curve
1‖ (see figure 1, left-hand page) have no nearby states of the same type and in the absence
of interaction maintainSz close to 1. The dispersion curves 2‖, 3‖ and 4‖ are essentially
interacting, with the strongest hybridization of the states of bands 3‖ and 4‖ in the range
are between the second and thirdk-points. Since, however, for both states the values ofSz
are close to−1, hybridization does not lead to a change inSz. At the same time, when the
bands 2‖ and 3‖ approach each other in the range between the fourth and fifthk-points,
interaction of states withSz different in sign leads first to variation of theSz-value and then
to the change of its sign; for the band 2‖ after intersectionSz ≈ −1, and for the band 3‖
Sz ≈ +1. We should note that, firstly, all changes occur over a smallk-range and, secondly,
there obviously existk-points whereSz = 0.

Because fork ⊥ Oz all states are already interacting, in the range between the fourth
and fifthk-points strong hybridization occurs for all three first bands. Now in this range for
the third band, 3⊥, Sz changes its sign, as before, from ‘−’ to ‘ +’; however, the reversal
of the sign ofSz from ‘+’ to ‘ −’ takes place not for the second but for the first band, 1⊥.
As to the second band 2⊥, it plays the role of a ‘mediator’, having time to change the sign
of Sz twice. In other words, moving along 2⊥, we twice run across the states withSz = 0.

As seen from the bottom half of table 3, a similar situation arises for bands 3, 4 and 5
in figure 1, right-hand page. Without going into details, we only mention that again all the
changes occur in the middle portion of the0H segment and—which is more interesting—
near the Fermi surface.

6. Conclusion

The implication of the analysis performed may be stated as follows. The consideration
of the state symmetry allows us to determine more correctly the compatibility of energy
bands and, in particular, to analyse the distributions between the dispersion curves for the
BZ directions parallel and normal to the magnetization. It is shown that for isolated energy
bands the spin density in FM-Fe follows the charge density deviations; this is also true for
an arbitrarily strong interaction between states with the same preferred spin direction. At the
same time, for even weak interaction of states with opposite spin directions the spin density
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Table 3. The projection of the spin magnetic moment onto the Oz axis (inµB ).

Energy bandsa

kb 1‖ 1⊥ 2‖ 2⊥ 3‖ 3⊥
0 0.999 0.999 0.998 0.998−0.999 −0.999
1 0.999 0.999 0.998 0.998−0.999 −0.999
2 0.999 0.999 0.998 0.998−0.999 −0.998

0.999 0.998 0.998 0.997−0.998 −0.998
3 0.999 0.998 0.998 0.995−0.998 −0.997

0.999 0.998 0.998 0.989−0.998 −0.989
4 0.999 0.997 0.995 0.909−0.996 −0.908

0.999 0.983 0.964−0.936 −0.965 0.950
5 0.998 −0.974 −0.973 0.979 0.972 0.991

0.998 −0.995 −0.996 0.996 0.996 0.996
6 0.998 −0.998 −0.998 0.998 0.998 0.997
7 0.998 −0.999 −0.999 0.998 0.998 0.998
H 0.999 −0.999 −0.999 0.999 0.998 0.998

Energy bandsc

kb 3‖ 3⊥ 4‖ 4⊥ 5‖ 5⊥
0 0.967 0.991 −0.967 −0.967 −0.990 −0.990
1 0.960 0.982 −0.960 −0.974 −0.993 −0.991
2 0.932 0.970 −0.932 −0.967 −0.996 −0.996

0.902 0.956 −0.902 −0.954 −0.997 −0.997
3 0.829 0.923 −0.829 −0.922 −0.997 −0.998

0.450 0.707 −0.450 −0.706 −0.997 −0.998
4 −0.814 −0.864 0.814 0.866−0.997 −0.998

−0.981 −0.988 0.981 0.990−0.997 −1.0
5 −0.995 −0.997 0.995 −0.999 −0.997 0.997

−0.998 −0.998 0.998 −0.999 −0.997 0.999
6 −1.0 −1.0 0.999 −0.999 −0.999 0.999
7 −1.0 −1.0 0.997 −0.999 −0.999 0.998
H −1.0 −1.0 —- −0.999 −0.999 —

a The numbering of bands corresponds to figure 1, left-hand page.
b The numbering of thek-points corresponds to the division of the0H segment into eight parts.
c The numbering of the bands corresponds to figure 1, right-hand page.

does not follow the charge density—changing the sign of the spin from point to point in the
BZ and vanishing at individualk-points. When there is interaction of several states with
differing spin direction, the general picture ofSz(k) variation can be quite complicated.

The above-mentioned facts are of little importance as long as characteristics connected
with integration over the filled portion of the spectrum are calculated. However, in analysing
phenomena due to the motion of an electron over the Fermi surface the band compatibility
and individual state characteristics can play a crucial role.
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